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An Improved Finite Element Method Formulation
for the Analysis of Nonlinear Anisotropic
Dielectric Waveguides

Stefano Selleri and Maurizio Zoboli, Member, IEEE

Abstract—An efficient and accurate vectorial finite element for-
mulation is presented for the analysis of dielectric waveguides
with arbitrary cross-sections, nonlinear behaviors, and
anisotropic materials. Remarkable improvements in solution
precision and computational effort have been obtained by
evaluating new coefficients used in the matrix assembling
procedure of the method. The influence of the mesh division is
discussed and comparison with a scalar finite element approach
is reported.

I. INTRODUCTION

IELECTRIC waveguides are fundamental components of

optoelectronic and microwave devices and, as such, a
rigorous description of the electromagnetic field propagating in
these structures is essential. New fabrication technologies have
provided devices with more and more complicate geometries
which, together with the usage of anisotropic (i.e. LiNbOj
and LiTaO3) or lossy materials, considerably complicate any
theoretical electromagnetic analysis. Furthermore, in the last
years, nonlinear media have been object of great interest
in order to realize devices with a large range of all-optical
potential applications [1], [2]. For this kind of structures
analytical approaches are possible only in particular cases
[3], and therefore the demand for accurate and powerful
numerical modeling techniques is constantly increasing. The
Finite Element Method (FEM) has provided an ideal tool for
this analysis, being easily applicable to structures with arbi-
trary geometries, nonlinear behaviors, anisotropic and lossy
materials.

Nevertheless particular attention must be paid when this
approach is used. Like all numerical techniques, the method
divides the domain of interest into subregions forming a mesh,
where the unknown field distribution will be sampled. Several
studies have been carried out to test the result sensibility
with respect to the domain division, especially in the linear
case. Generally, the usage of dense meshes assures the result
correctness. Nevertheless an excessive number of nodal points
can be useless and even deleterious for computing efforts. For
what concerns nonlinear structures, much more care must be
exercised. In fact, as the material nonlinearities may produce
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strong refractive index changes and consequently strong vari-
ations in the unknown field, a particularly thick and accurate
sampling is mandatory. On the contrary, as the iterative proce-
dure usually developed for the nonlinear analysis remarkably
increases the computing time, mesh dimensions must not be
superfluously expanded. Adaptative mesh technique [4]-[6]
seemed to be an ideal approach to overcame the question but,
up to date, no exhaustive thorough examinations have been
proposed for the nonlinear electromagnetic analysis. Recently
Hayata et al. [7] have shown the great difference arising in
the solutions of a nonlinear rectangular waveguide using a
coarse or a refined mesh. Wang et al. [8] have discussed
the same problem addressing some precautional factors to
be applied in nonlinear numerical simulations. Nonetheless
no definitive considerations have been suggested to choose
adequate element sizes.

In this work a new efficient FEM formulation is presented
in order to bring forward a contribution to the question. Its
major feature, compared with previous approaches, regards the
remarkable increase in the nonlinear solution accuracy and in
the convergence speed for a fixed mesh, or, on the other hand,
the reduction of the total nodes necessary to obtain a given
precision.

These improvements have been possible by developing new
matrix elements to be used in the assembling procedure of the
nonlinear system matrices. Similar elements have been already
evaluated for the simple quasi-two-dimensional problem (one
transverse spatial variable) [9], and advantages related to
their application have been already discussed [10]. A further
contribution of this paper regards their expressions provided
for quasithree-dimensional problems (two transverse spatial
variables).

The next section deals with the proposed formulation and
with the definition of the new matrix elements. Section III
presents some applications in order to verify the achieved
improvements and to compare solutions with those obtained by
means of a scalar finite element formulation [11]. Conclusions
follow.

II. FINITE ELEMENT THEORY

Supposing a time dependence of the magnetic field H
expressed through the factor e?(“*=f2)  and # being the
angular frequency and the phase constant, the finite element
method formulation usually starts from the so called curl-curl
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[12]-{15]

Vx [TV x H)—kiH =0 (1)
where [¢] and ky are respectively the nonlinear relative permit-
tivity tensor and the wavenumber in vacuum. The formulation
expressed by (1) is particularly suitable for dielectric wave-
guides as the field components of H are continuous across
the dielectric interface. Consider a nonlinear medium with a
diagonal permittivity tensor

ez 0 0
[E]=10 ¢ O
0 0 e,

Its elements can be expressed as follows:

¢x = +af(Be) +nf(By) +nf(E:)
ey = ¢+ 1f(Ey) + af(Ey) +nf(E:) )
ez = e+ nf(Ey) +nf(By) + af(E.).

In (2) ¢ is the linear (low power) permittivity; « is a

parameter related to the so called Kerr coefficient iy through
a = cpegeng where ¢g and ey are the light speed and the
permittivity in the vacuum; the coefficient 1 depends on the
particular nonlinear mechanism. The function f({E) represents
a given permittivity electric field dependence. For a Kerr-like
material f(F) is defined as |F|? while considering saturable
models, which appear to be physically necessary when strong
self-focusing with a quasithree dimensional formulation is
simulated [8], f(F) can be assumed to be

f([ED = AEsat[l - 6—7|E|2/A55M] (3)

Aeg,y being the maximum nonlinear permittivity increase
and  a coefficient depending on the particular nonlinear
mechanism.

Dividing the domain of interest into second order triangular
elements, the application to (1) of a Galerkin procedure based
on the penalty function method [13] yields the following
eigenvalue problem [15]:

([S]+ [UD{H} - k[T

{H} being the vector of the magnetic field nodal values. [T
is a real symmetric matrix: for loss-free materials [U] is a real
symmetric matrix while [S] a complex hermitian one. It is
important to point out that only [S] depends on the nonlinear
permittivity tensor; [S] is defined as follows:

s1=3 [ [ 11

where 2, refers to the current element of the domain and

[{H} =0, @)

17 dSe (5)

{0y —JjB{N} —{N}ly
[B] = [iB{N} {0} {N}a | (6)

In (6) {N}l = (‘){N}/8r {N}, = {N}/0y and {N} =
(N1, N2, No, Ny, N5, Ng)T, N,(i = 1---6) being the second

order shape functions [15]. In particular [S] can be considered
a block matrix made up by the submatrices [$5,], [$2y], [Sz2],
[$yz) [Syul, [8y=], [822], [S2y] and [s;;] as follows:

[s2e] [say] [522]
[S] = {lsyel [syy] [sy:] |- (N
|3:w| [5:1/] [S:z]

Developing the matrix product in (5) it yields the explicit
expressions of the elements of each submatrix

Spxrj = ﬂzbi_] + Oy
Szyyy = “Cy
Sypxig = /Bfl]
Syriy = €y
Syyyy = /52le +d,,
Syzuy = Py
Szriy — /Bfl]
Szyy = ey

Szz1y = Qo + dl]

© 8N, dN,
. Q.
f / oy oy o

bijz/ qNNdQ

Coj = / N J dQ

dm—/ N, aNJdQ

where

3)

Bx ox
ON, ON,
€ = / ax Oy 5 0k

ON
ij — Nz—_JdQe
Tis /Qeq Oz

with the subscripts ¢ and 7, from 1 to 6, referring to the nodal
points of each triangle. In (8) the coefficient ¢ represents
the appropriate elements of [¢] ' which vary from element
to element and also within an element, depending on the
unknown field through (2). The obtained (4) is thus a nonlinear
problem; in particular a nonlinear generalized eigenvalue
problem whose eigenvalues and eigenvectors correspond to
the wavenumber in vacuum ko and the magnetic field {H}
respectively. A self-consistent nonlinear solution can be ob-
tained following an iterative procedure [16], [17]. In order to
be successful, the spurious solutions must be eliminated: in
the proposed formulation the penalty function approach has
been adopted although its application introduces a slight error
in the solution values. The procedure is as follows:
* Specify the input data: the frequency v (w = 27v) and
the input power P.
*» Resolve (4) obtaining {H }.
e Calculate the unknown electric field E through the
Maxwell's equation

E =YV x H)/jw. 9)
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Specifically, as the magnetic field is defined within each
element in terms of its nodal values { H} and of the shape
functions {V}, the vector of the electric field nodal values
{E} can be expressed by:

{E} = [~ ([BI"{H}e 7%%)/jw. (10)

* Calculate the modified permittivity tensor for each ele-
ment of the domain through (2). In particular the new
formulation proposed in this work defines and modifies
the permittivity tensor in each nodal point of the domain.
Implications of this choice will be discussed in the
following.

¢ iterate the above procedure (second, third and fourth
steps) until the solution converges within the desired
criterion.

The evaluation of the vector {E£} (step three) and of the
new permittivity profile (step four) are critical operations in
~ order to obtain convergence to a correct solution. Although

the unknown vector {H} is evaluated in each point of the
mesh, permittivity tensors [¢] are usually defined on each mesh
element rather than on mesh points. This choice implies that
all the nodes belonging to the same triangle present the same
nonlinear refractive index variation. The approximation intro-
duced is particularly rough if coarse meshes are considered
and causes a kind of filtering in the permittivity profile.

Furthermore, applying (2) to the mesh elements, a unique
electric field value over each triangle must be defined while the
vector {E} of the electric field nodal values is given through
(10). This unique value is then usually obtained either through
an integral average over the current triangle or by considering
the barycentric value of the electric field or by taking the
quadratic average of the nodal electric field values. Whatever
the choice, a further approximation is introduced.

A more rigorous and realistic approach can be followed
defining a permittivity tensor in each mesh point instead of in
each mesh element and further expanding all elements of [€],
or their inverse, in terms of the shape functions of the current
triangle

= (N} {gn}e (1)
{Qn}e = [q1n G2n 93n G4n 95n Q6n] (12)
with n = z,y,z and the indices 1,...,6 referring to the

element nodes. Substituting (11), (12) into (8), it yields the
explicit forms of the coefficients to be used in defining
the matrix [S]. Their complete symbolic expressions can be
calculated by means of a general computer software system
as, for example, Mathematica [18]. The same permittivity
expansion (11), (12) can be exercised to obtain the power
expression in terms of the coefficients (8).

III. NUMERICAL APPLICATIONS

In this section a linear strip of width w and height h, sitting
on a nonlinear substrate and surrounded by a linear cladding is
considered. A saturable nonlinear model and particular w and
h values are assumed in order to test the obtained solutions and
to compare the results with the scalar finite element approach
proposed by Li et al. [11].
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Fig. 1. Mesh A: N. = 166; N, = 355, w = 2.0 pm, and h = 04 pm.
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Fig. 2. Mesh B: Ne = 334; N,
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Fig. 3. Mesh C: Ne = 566; Np = 1159; w = 2.0 um, and b = 0.4 pm.

To analyze mesh influence, the waveguide cross-section
has been divided into N, elements with [V, total points. In
particular N, = 166 and N, = 355 for mesh A in Fig. 1;
N, = 334 and N, = 691 for mesh B in Fig. 2 and N, = 566
and N, = 1159 for mesh C in Fig. 3. All the considered
meshes have been symmetrically made up with respect to
the horizontal axis of the structure. Although computationally
inefficient, this choice allows to concentrate better on- the
effects caused on the solutions by the number of nodes rather
than by their distribution.

In the following examples, the values w = 2.0 ym, h = 0.4
pm, neo = 1.57, nea = 1.55, nep = 1.55, iz = 10~ "m?/W
(MBBA liquid crystal), Aegse = 0.09696, and the wavelength
A = 0.515 nm have been chosen.

It has been verified that the different element divisions
strongly influence the final effective index n.g = [/ko and
the field profile when using FEM formulations that define a
constant permittivity tensor over each triangle. For example
a formulation which evaluates the permittivity variations us-
ing the electric field integral average over the element has
been considered. Results are reported in Fig. 4 where the
normalized propagation constant b = (n2g —n2))/(n2, —n2,)
versus the input power has been plotted for the case of
mesh A, together with some points of the dispersion curves
related to mesh B and C. Solutions obtained with meshes A
and B are comparable for very low powers, that is when
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Fig. 4. Normalized propagation constant b versus the input power for mesh
A (solid line), mesh B (circles), and mesh C (plus symbols), evaluating the
permittivity variations through the electric field integral average over each
triangle. Waveguide parameters: w = 2.0 um, h = 0.4 pum. nee = 1.57.
ng = 1.55, ny, = L.55; nonlinearity parameters: iz = 107° m?/W,
A€gar = 0.09696, A = 0.515 nm.

the induced index changes are still much lower than the
linear index difference An = n., — e, and for high power
levels, i.e. when the saturation strongly affects the solutions.
In the intermediate range, the agreement is lost and the
effective indices of the finer mesh are higher than the other
ones. Moreover, the division B seems to be not yet enough
refined if compared with mesh C whose results are manifestly
higher. A further increment in the element number of mesh C
does not produce any significant variations. This circumstance
allows the conclusion that the points of the last curve can
be considered the superior limit of the solutions obtainable
through this formulation. It is important to point out that
these curves are quite different from the ones reported in [11].
Similar solution behaviors with respect to the meshes, can be
observed also in FEM formulations which consider a constant
permittivity tensor within the current triangle and approximate
the electric field through the barycentric value or through the
quadratic average of the nodal values. These examples clarify
the imprecision and the solution uncertainty due to the usage
of strong approximations like those previously explained.

Following the approach of section two, a remarkable im-
provement is achieved, as shown in Fig. 5. The solid line refers
to solutions of mesh A. The normalized propagation constants
lying on this curve present values even higher than the ones
obtained with mesh C using the previous formulation. To
facilitate the comparison, the solutions plotted in Fig. 4 with
plus symbols are also reported in Fig. 5. The new formulation
results for the other two structures are also plotted. Again the
b values increase by refining the element division but now the
two curves almost coincide as mesh C yields only very slight
variations with respect to mesh B. Such a fine division is now
useless and computationally inefficient as the same accuracy
is attainable with less points.

A comparison between the usual and the new formulation
emphasizes the better agreement of the latter with the scalar
approach results proposed in [11] also considering not very
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Fig. 5. Normalized propagation constant b versus the input power for mesh
A (solid line), mesh B (black points), and mesh C (stars symbols), using
the new formulation; the last curve of Fig. 4 is also reported (plus symbols).
Waveguide and nonlinearity parameters as i Fig. 4.

fine meshes. Moreover it is worth pointing out that the
vectorial approach provides an effective index slightly lower
than the scalar one. Similar results have already been verified
in previous works [16].

The effects of the new formulation can be observed also
in the spatial distribution of the electromagnetic field. For
example, the main components of the vector H, computed
for an input power P = 55 uW, obtained from the old
and the new formulation, are shown in Figs. 6 and 7. It is
interesting to observe that the new approach provides a field
whose profile is slightly more focused and more displaced in
the nonlinear substrate than the other one. This phenomenon
can be explained as follows: as the formulation that evaluates
the electric field through an integral average over the current
triangle defines a permittivity tensor in each element, the
nonlinear evolution of the refractive index profile is filtered
and attenuated. On the contrary, defining a permittivity tensor
in each node of the mesh, the refractive index can follow the
nonlinearity law, point by point. This feature eliminates any
filtering action thus providing more focused field distributions
as well as higher propagation constants. It is important to note
that this effect is independent of the element size since the
same mesh has been used.

In terms of computing efforts, a further and important
advantage has also been reached in the convergence speed of
the nonlinear iterative process. Fig. 8 reports the normalized
propagation constant versus the iteration number computed
for a waveguide with w = 2.0 ym and A = 1.2 pm. The
new formulation (curve a) is compared with three different
approaches that evaluate the electric field over each element
as follows: through an integral average (curve b); through a
quadratic average of the {F} values over each triangle nodes
(curve c) and using the triangle barycentre value of the electric
field (curve d). The improvement of the new formulation is
evident both in terms of final normalized propagation constant
and of convergence speed. In fact, the number of iterations
needed to reach a stable solution is manifestly lower for curve
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Fig. 6. The main component of the magnetic field for P = 55 pW;

fiz = 107% m?/W, Aecat = 0.09696. Mesh C has been considered. The

permiitivity variation has been evaluated using the electric field integral

average over each triangle.
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Fig. 7. The main component of the magnetic field for P = 55 uW;
Rz = 1079m2/W, Acsay = 0.09696. Mesh C has been considered. The
new formulation has been used.

a than for the others curves; furthermore only the final value
of the former presents a good agreement with the results
presented in [11]. On the contrary, the other formulations
lead to different solutions as the third and fourth steps of the
nonlinear procedure are not rigorously carried out.

IV. CONCLUSION

A new vectorial finite element method formulation for the
analysis of quasithree-dimensional problems (two transverse
spatial variables) has been proposed. Improvements related
to the solution accuracy and computational effort have been
achieved by developing new integral coefficients involved in
the system matrix definition.

Some approximations related to the evaluation of the refrac-
tive index changes, commonly introduced in nonlinear FEM
iterative procedure, have been discussed and eliminated. The
solution accuracy thus reached is now mainly affected by the
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Fig. 8. Normalized propagation constant versus the iteration number. Com-

parison of the new formulation (curve a) with three different approaches that
evaluate the electric field over each element through an integral average (curve
b); through a quadratic average of the {E} values over each triangle nodes
(curve c) and using the triangle barycentre value of the electric field (curve
d). Waveguide parameters: w = 2.0 pm, b = 1.2 pm, neo = 1.57, n =
1.55, ng, = 1.55. A saturable nonlinearity with i = 107% m?, Ae o =
0.09 696, a wavelength A = 0.515 nm, and an input power P = 100 p'W
have been considered.

presence of the penalty function. In order to overcame this
effect and to avoid spurious modes, the application of this new
approach to a transverse magnetic field [19]-[21] or to an edge
elements FEM formulation will be object of future work.
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