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An Improved Finite Element Method Formulation

for the Analysis of Nonlinear Anisotropic

Dielectric Waveguides
Stefano Selleri and Maurizio Zoboli, Member, IEEE

Abstract-An efficient and accurate vectorial finite element for-

mulation is presented for the analysis of dielectric waveguides
with arbitrary cross-sections, nonlinear behaviors, and
anisotropic materials. Remarkable improvements in solution
precision and computational effort have been obtained by
evaluating new coefficients used in the matrix assembling

procedure of the method. The influence of the mesh division is

discussed and comparison with a scalar finite element approach
is reported.

I. INTRODUCTION

D IELECTRIC waveguides are fundamental components of

optoelectronic and microwave devices and, as such, a

rigorous description of the electromagnetic field propagating in

these structures is essential. New fabrication technologies have

provided devices with more and more complicate geometries

which, together with the usage of anisotropic (i.e. LiNb03

and LiTa03) or lossy materials, considerably complicate any

theoretical electromagnetic analysis. Furthermore, in the last

years, nonlinear media have been object of great interest

in order to realize devices with a large range of all-optical

potential applications [1], [2]. For this kind of structures

analytical approaches are possible only in particular cases

[3], and therefore the demand for accurate and powerful

numerical modeling techniques is constantly increasing. The

Finite Element Method (FEM) has provided an ideal tool for

this analysis, being easily applicable to structures with arbi-

trary geometries, nonlinear behaviors, anisotropic and lossy

materials.

Nevertheless particular attention must be paid when this

approach is used. Like all numerical techniques, the method

divides the domain of interest into subregions forming a mesh,

where the unknown field distribution will be sampled. Several

studies have been carried out to test the result sensibility

with respect to the domain division, especially in the linear

case. Generally, the usage of dense meshes assures the result

correctness. Nevertheless an excessive number of nodal points

can be useless and even deleterious for computing efforts. For

what concerns nonlinear structures, much more care must be

exercised. In fact, as the material nonlinearities may produce
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strong refractive index changes and consequently strong vari-

ations in the unknown field, a particularly thick and accurate

sampling is mandatory. On the contrary, as the iterative proce-

dure usually developed for the nonlinear analysis remarkably

increases the computing time, mesh dimensions must not be

superfluously expanded. Adaptative mesh technique [4]–[6]

seemed to be an ideal approach to overcame the question but,

up to date, no exhaustive thorough examinations have been

proposed for the nonlinear electromagnetic analysis. Recently

Hayata et al. [7] have shown the great difference arising in

the solutions of a nonlinear rectangular waveguide using a

coarse or a refined mesh. Wang et al. [8] have discussed

the same problem addressing some precautional factors to

be applied in nonlinear numerical simulations. Nonetheless

no definitive considerations have been suggested to choose

adequate element sizes.

In this work a new efficient FEM formulation is presented

in order to bring forward a contribution to the question. Its

major feature, compared with previous approaches, regards the

remarkable increase in the nonlinear solution accuracy and in

the convergence speed for a fixed mesh, or, on the other hand,

the reduction of the total nodes necessary to obtain a given

precision.

These improvements have been possible by developing new

matrix elements to be used in the assembling procedure of the

nonlinear system matrices. Similar elements have been already

evaluated for the simple quasi-two-dimensional problem (one

transverse spatial variable) [9], and advantages related to

their application have been already discussed [10]. A further

contribution of this paper regards their expressions provided

for quasithree-dimensional problems (two transverse spatial

variables).

The next section deals with the proposed formulation and

with the definition of the new matrix elements. Section III

presents some applications in order to verify the achieved

improvements and to compare solutions with those obtained by

means of a scalar finite element formulation [11]. Conclusions

follow.

II. FINITE ELEMENT THEORY

Supposing a time dependence of the magnetic field ~

expressed through the factor e~(Wt‘~”), w and /3 being the

angular frequency and the phase constant, the finite element

method formulation usually starts from the so called curl-curl
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[12]-[15]

Q x ([:]-lP x Ii) –L@i=o (1)

where [;] and k. are respectively the nonlinear relative permit-

tivity tensor and the wavenumber in vacuum. The formulation

expressed by (1) is particularly suitable for dielectric wave-

guides as the field components of H are continuous across

the dielectric interface. Consider a nonlinear medium with a

diagonal permittivity tensor

[1
00

[;]= % Cg (1 .

Oofz

Its elements can be expressed as follows:

In (2) et is the linear (low power) permittivity; a is a

parameter related to the so called Kerr coefficient nz through
a = Co ~. Cl ii2 where co and F() are the light speed and the

permittivity in the vacuum; the coefficient q depends on the

particular nonlinear mechanism. The function ,f(13) represents

a given permittivity electric field dependence. For a Kerr-1ike

material ~(13) is defined as IE \2 while considering saturable

models, which appear to be physically necessary when strong

self-focusing with a quasithree dimensional formulation is

simulated [8], ,f(-E) can be assumed to be

f(l~l) = A%a,[l - e-+w~’sat, (3)

Ae,.t being the maximum nonlinear permittivity increase

and ~ a coefficient depending on the particular nonlinear

mechanism.

Dividing the domain of interest into second order triangular

elements, the application to (1) of a Galerkin procedure based

on the penalty function method [13] yields the following

eigenvalue problem [15]:

([s] + [U]){H} - k;[T]{H} = o, (4)

{H} being the vector of the magnetic field nodal values. [T]

is a real symmetric matrix; for loss-free materials [U] is a real

symmetric matrix while [S] a complex hermitian one. It is

important to point out that only [S] depends on the nonlinear

permittivity tensor; [S] is defined as follows:

[s1= ~ / / [B]*[:]-’[B]TdfL (5)
n. !2.

where 0, refers to the current element of the domain and

r {o} –j~{~} –{~}, 1

[B] = ,j~{N} {o} {N}r . (6)

L.j{N}, -j{N}r {O} j

In (6) {N}x = d{ N}/d.c, {N}y = tl{N}/tly and {N} =

(Nl, Nz, N2, N4, N5, NG)T, N,(z’ = 1. . 6) being the second

order shape functions [15]. In particular [S] can be considered

a block matrix made up by the submatrices [s~~], [S~u], [S~~],

[syzl [stiYl, [su~l, [s~~], [S~v] and [szz] as follows:

[

[S.tz] [%y]
[s1 = 1%1 [SYYI

Issrl [S,q,l]
Developing the matrix product in

expressions of the elements of each

[S.rz]

1[::;~ (7)

. .

(5) it yields the explicit

submatrix

(8)

with the subscripts i and j, from 1 to 6, referring to the nodal

points of each triangle. In (8) the coefficient q represents

the appropriate elements of [;] – 1 which vary from element

to element and also within an element, depending on the

unknown field through (2). The obtained (4) is thus a nonlinear

problem; in particular a nonlinear generalized eigenvalue

problem whose eigenvalues and eigenvectors correspond to

the wavenumber in vacuum kO and the magnetic field {H}

respective] y. A self-consistent nonlinear solution can be ob-

tained following an iterative procedure [16], [17]. In order to

be successful, the spurious solutions must be eliminated; in

the proposed formulation the penalty function approach has

been adopted although its application introduces a slight error

in the solution values. The procedure is as follows:

●

✎

●

Specify the input data: the frequency u (w = 2tTv) and

the input power P.

Resolve (4) obtaining {H}.

Calculate the unknown electric field E through the

Maxwell’s equation

E = [;]-l(P x H)/:jw. (9)
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Specifically, as the magnetic field is defined within each

element in terms of its nodal values {H} and of the shape

functions {N}, the vector of the electric field nodal values

{1?} can be expressed by:

{E} = [;]-’([l?]T{lf} e-~62)/ju. (lo)

● Calculate the modified perrnittivity tensor for each ele-

ment of the domain through (2). In particular the new

formulation proposed in this work defines and modifies

the permittivity tensor in each nodal point of the domain.

Implications of this choice will be discussed in the

following.

● iterate the above procedure (second, third and fourth

steps) until the solution converges within the desired

criterion.

The evaluation of the vector {E} (step three) and of the

new permittivity profile (step four) are critical operations in

order to obtain convergence to a correct solution. Although

the unknown vector {H} is evaluated in each point of the

mesh, permittivity tensors [~] are usually defined on each mesh

element rather than on mesh points. This choice implies that

all the nodes belonging to the same triangle present the same

nonlinear refractive index variation. The approximation intro-

duced is particularly rough if coarse meshes are considered

and causes a kind of filtering in the permittivity profile.

Furthermore, applying (2) to the mesh elements, a unique

electric field value over each triangle must be defined while the

vector {E} of the electric field nodal values is given through

(10). This unique value is then usually obtained either through

an integral average over the current triangle or by considering

the barycentric value of the electric field or by taking the

quadratic average of the nodal electric field values. Whatever

the choice, a further approximation is introduced.

A more rigorous and realistic approach can be followed

defining a permittivity tensor in each mesh point instead of in

each mesh element and further expanding all elements of [?],

or their inverse, in terms of the shape functions of the current

triangle

9. = {N}T{9n}e (11)

{qn}. = [qln ~2n q3n q4n q5n q6n] (12)

with n = $, y, z and the indices 1, . ...6 referring to the

element nodes. Substituting (11 ), (12) into (8), it yields the

explicit forms of the coefficients to be used in defining

the matrix [S]. Their complete symbolic expressions can be

calculated by means of a general computer software system

as, for example, Mathematical [18]. The same permittivity

expansion (11), (12) can be exercised to obtain the power

expression in terms of the coefficients (8).

III. NUMERICAL APPLICATIONS

In this section a linear strip of width w and height h, sitting

on a nonlinear substrate and surrounded by a linear cladding is

considered. A saturable nonlinear model and particular w and

h values are assumed in order to test the obtained solutions and

to compare the results with the scalar finite element approach

proposed by Li et al. [11].
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Fig. 1. Mesh A: N. = 166; NP = 355; w = 2.0 pm, and h = 0.4 pm.
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Mesh B: N, = 334; NP = 691; w = 2.0 pm, and h = 0.4 pm.
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Fig. 3. Mesh C: N. = 5b6; NP = 1159; w = 2.0 pm, and h = 0.4 pm.

To analyze mesh influence, the waveguide cross-section

has been divided into N. elements with NP total points. In

particular N. = 166 and NP = 355 for mesh A in Fig. 1;

N. = 334 and NP = 691 for mesh B in Fig. 2 and N. = 566

and NP “= 1159 for mesh C in Fig. 3. All the considered

meshes have been symmetrically made up with respect to

the horizontal axis of the structure. Although computationally

inefficient, this choice allows to concentrate better on the

effects caused on the solutions by the number of nodes rather

than by their distribution.

In the following examples, the values w = 2.0 ~m, h = 0.4

pm, ?2.0 = 1.57, ?3.1 = 1.55, Ttsb = 1.5.5, ~Z = lo–gm2/w

(MBBA liquid crystal), Ac,., = 0.09696, and the wavelength

J = 0.515 nm have been chosen.

It has been verified that the different element divisions

strongly influence the final effective index n.ff = @/k. and

the field profile when using FEM formulations that define a

constant permittivity tensor over each triangle. For example

a formulation which evaluates the permittivity variations us-

ing the electric field integral average over the element has

been considered. Results are reported in Fig. 4 where the

normalized propagation constant b = (n~fi – n~b) / (n& – n~b )

versus the input power has been plotted for the case of

mesh A, together with some points of the dispersion curves

related to mesh B and C. Solutions obtained with meshes A

and B are comparable for very low powers, that is when
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Fig. 4. Normalized propagation constant b versus the input power for mesh
A (solid line), mesh B (circles), and mesh C (plus symbols), evaluating the
permittivity variations through the electric field integrat average over each
triangle. Waveguide parameters: tc = 2.0 pm, h = 0.4 &m. rr.~ = 1.57.

~cl = 1..55, nsb = 1.55; nonlinearity parameters: fi~ = 10–9 m2/W,
iksat = 0.09696, A = 0.515 nm.

the induced index changes are still much lower than the

linear index difference An = nco – ncl, and for high power

levels, i.e. when the saturation strongly affects the solutions.

In the intermediate range, the agreement is lost and the

effective indices of the finer mesh are higher than the other

ones. Moreover, the division B seems to be not yet enough

refined if compared with mesh C whose results are manifestly

higher. A further increment in the element number of mesh C

does not produce any significant variations. This circumstance

allows the conclusion that the points of the last curve can

be considered the superior limit of the solutions obtainable

through this formulation. It is important to point out that

these curves are quite different from the ones reported in [11].

Similar solution behaviors with respect to the meshes, can be

observed also in FEM formulations which consider a constant

permittivity tensor within the current triangle and approximate

the electric field through the barycentric value or through the

quadratic average of the nodal values, These examples clarify

the imprecision and the solution uncertainty due to the usage

of strong approximations like those previously explained.

Following the approach of section two, a remarkable im-

provement is achieved, as shown in Fig. 5. The solid line refers

to solutions of mesh A. The normalized propagation constants

lying on this curve present values even higher than the ones

obtained with mesh C using the previous formulation. To

facilitate the comparison, the solutions plotted in Fig. 4 with

plus symbols are also reported in Fig. 5. The new formulation

results for the other two structures are also plotted. Again the

b values increase by refining the element division but now the

two curves almost coincide as mesh C yields only very slight

variations with respect to mesh B. Such a fine division is now

useless and computationally inefficient as the same accuracy

is attainable with less points,

A comparison between the usual and the new formulation

emphasizes the better agreement of the latter with the scalar

approach results proposed in [11] also considering not very

001
0 10 20 30 40 50 60 70 80 90

Power (yW)

Fig. 5. Normalized propagation constant h versus the input power for mesh

A (solid line), mesh B (black points), and mesh C (stars symbols), using
the new formulation; the last cnrve of Fig. 4 is also reported (plus symbols).
Waveguide and nonlinearity parameters as m Fig. 4.

fine meshes. Moreover it is worth pointing out that the

vectorial approach provides an effective index slightly lower

than the scalar one. Similar results have already been verified

in previous works [16].

The effects of the new formulation can be observed also

in the spatial distribution of the electromagnetic field. For

example, the main components of the vector II, computed

for an input power P = 55 uW, obtained from the old

and the new formulation, are shown in Figs. 6 and 7. It is

interesting to observe that the new approach provides a field

whose profile is slightly more focused and more displaced in

the nonlinear substrate than the other one. This phenomenon

can be explained as follows: as the formulation that evaluates

the electric field through an integral average over the current

triangle defines a permittivity tensor in each element, the

nonlinear evolution of the refractive index profile is filtered

and attenuated. On the contrary, defining a permittivity tensor

in each node of the mesh. the refractive index can follow the

nonlinearity law, point by point. This feature eliminates any

filtering action thus providing more focused field distributions

as well as higher propagation constants. It is important to note

that this effect is independent of the element size since the

same mesh has been used.

In terms of computing efforts. a further and important

advantage has also been reached in the convergence speed of

the nonlinear iterative process. Fig. 8 reports the normalized

propagation constant versus the iteration number computed

for a waveguide with w = 2.0 &m and h = 1.2 pm. The

new formulation (curve a) is compared with three different

approaches that evaluate the electric field over each element

as follows: through an integral average (curve b); through a

quadratic average of the {E} values over each triangle nodes

(curve c) and using the triangle barycentre value of the electric

field (curve d). The improvement of the new formulation is

evident both in terms of final normalized propagation constant

and of convergence speed. In fact, the number of iterations

needed to reach a stable solution is manifestly lower for curve
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Fig. 6. The main component of the magnetic field for P = 55 p,W;

fiz = 10–9 m21W, Ae,at = 0.09696. Mesh C has been considered. The
perrnittivity variation has been evaluated using the electric field integral

average over each triangle.
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Fig. 7. The main component of the magnetic field for P = 55 KW;

il 2 = 10 ‘g m2/W, Ae,.t = 0.09696. Mesh C has been considered. The

new formulation has been used.

a than for the others curves; furthermore only the final value

of the former presents a good agreement with the results

presented in [11]. On the contrary, the other formulations

lead to different solutions as the third and fourth steps of the

nonlinear procedure are not rigorously cairied out.

IV. CONCLUSION

A new vectorial finite element method formulation for the

analysis of quasithree-dimensional problems (two transverse

spatial variables) has been proposed. Improvements related

to the solution accuracy and computational effort have been
achieved by developing new integral coefficients involved in

the system matrix definition.

Some approximations related to the evaluation of the refrac-

tive index changes, commonly introduced in nonlinear FEM

iterative procedure, have been discussed and eliminated. The

solution accuracy thus reached is now mainly affected by the
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Fig. 8. Normalized propagation constant versus the iteration number. Com-
parison of the new formulation (curve a) with three different approaches that

evaluate the electric field over each element through an integral average (curve
b); “through a quadratic average of the {-/3} vatues over each triangle nodes

(curve c) and using the triangle barycentre value of the electric field (curve

d). Waveguide parameters: u, = 2.0 pm, h = 1.2 pm, rzco = 1.57, ncl =
1.55, n,b = 1.55. A saturable nonlinearity with FL2 = 10–9 mz, A~5.t =
0.09696, a wavelength A = 0.515 nm, and an input power P = 100 p W
have been considered.

presence of the penalty function. In order to overcame this

effect and to avoid spurious modes, the application of this new

approach to a transverse magnetic field [19]–[21 ] or to an edge

elements FEM formulation will be object of future work.
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